Answer:
Explanation:
a ) Let the distance required in former case be d₁ .
initial velocity u = 30 m /s , final velocity v =0 , deceleration a = 7.00 m /s²
v² = u² - 2 a s
0 = 30² - 2 x 7 x d₁
d₁ = 64.28 m
b) initial velocity u = 30 m /s , final velocity v =0 , deceleration a = 5.00 m /s²
v² = u² - 2 a s
0 = 30² - 2 x 5 x d₂
d₂ = 90 m
c)
t = .5 s
s₁ = ut - .5 at²
= 30 x .5 - .5 x 7 x .5²
= 15 - .875
= 14.125 m
t = .5 s
s₂ = ut - .5 at²
= 30 x .5 - .5 x 5 x .5²
= 15 - .625
= 14.375 m
The total resistance of electric circuit when resistors wired in a series is the sum of the individual resistance: each resistor in a series circuit has the same amount of current through and through it. Each resistor in a parallel circuit the same for voltage of the source applied to it.
when resistors are connected in parallel, the supply current is equal to the sum of the currents the metre resistor. In other words the currents in the branches of a parallel circuit add up to the supply current. When resistors are connected in parallel, they have the same potential difference is across them
The correct answer to this question is this one:
By definition, if a molecule is composed of two hydrogen atoms and one oxygen atom, that molecule is a water.<span> In fact, the structure of water is written as H20, which signifies that two hydrogen (H) atoms and one oxygen (O) atom make up the molecule.</span>
Answer:
(C) 2P
Explanation:
Ideal gas law states:
PV = nRT
n (the number of moles) and R (ideal gas constant) are constant, so we can say:
(PV / T) before = (PV / T) after
Chamber X starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Px, the volume is Vx, and temperature 3T.
PV / T = Px Vx / 3T
Chamber Y starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Py, the volume is Vy, and temperature T.
PV / T = Py Vy / T
Substituting and simplifying:
Px Vx / 3T = Py Vy / T
Px Vx / 3 = Py Vy
Since the chambers are at equilibrium, Px = Py:
Vx / 3 = Vy
Vx = 3 Vy
The total volume is the same as before, so:
Vx + Vy = 2V
Substituting:
(3 Vy) + Vy = 2V
4 Vy = 2V
Vy = V / 2
Now if we substitute into our equation for chamber Y:
PV / T = Py (V/2) / T
PV = Py (V/2)
Py = 2P
The pressure in chamber Y (and chamber X) doubles at equilibrium.