Answer:
a) The duration, during which the block remain in contact with the spring is 0.29 s
b) The period of the simple harmonic oscillatory motion depends only on the mass and spring constant, therefore when the speed is doubled, the duration of contact remains the same as 0.29 s.
Explanation:
Mass of the block = 465 g
Surface speed = 0.35 m/s
Spring constant , k = 54 N/m
= 0.58 s
a) Since the period for the oscillatory motion is 0.58 s, then the time when the block and spring remain in contact is T/2 = 0.29 s
b) When the speed is doubled, we have

Therefore, since T is only dependent on the mass, m and the spring constant, K, then the time it takes when the speed is doubled remain as
T /2 = 0.29 s
Well its C, cant show you the work its in my head sorry.
Answer: 1.77 s
Explanation: In order to solve this problem we have to use the kinematic equation for the position, so we have:
xf= xo+vo*t+(g*t^2)/2 we can consider the origin on the top so the xo=0 and xf=29 m; then
(g*t^2)/2+vo*t-xf=0 vo is the initail velocity, vo=7.65 m/s
then by solving the quadratric equation in t
t=1.77 s
True, They contain old stars and posses little gas or dust
Answer:
160N
Explanation:
Moments must be conserved - so.

