Answer:
2.73414 seconds
467622.66798 J
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
or
The time taken is 2.73414 seconds
The potential energy is given by
The change in potential energy is 467622.66798 J
Answer:
V=2.8 ml
Explanation:
volume of the cube is it would be 20.3 - 17.5 ml so 2.8 ml.
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass kg, charge +e = C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed m/s. The proton comes momentarily to rest at a distance m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are m apart?
Explanation:
The given data is as follows.
Mass of proton = kg
Charge of proton =
Speed of proton =
Distance traveled =
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=
where,
U =
Putting the given values into the above formula as follows.
U =
=
=
Therefore, we can conclude that the electric potential energy of the proton and nucleus is .
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".