Answer:
a)Change in the speed = 1.41 m/s
b)The final speed will be 3.11 m/s
Explanation:
Given that
Acceleration ,a= 4.7 x 10⁻³ m/s²
a)
We know that
v= u + a t
v=final speed ,u=initial speed
t= time ,a= acceleration
Change in the speed
v- u = a t
t= 5 min = 5 x 60 s = 300 s
v- u = 4.7 x 10⁻³ x 5 x 60 m/s
v-u = 1.41 m/s
Change in the speed = 1.41 m/s
b)
Given that
u= 1.7 m/s
v-u = 1.41 m/s
v= 1.7 + 1.41 m/s
v=3.11 m/s
The final speed will be 3.11 m/s
You could easily help yourSELF if you simply follow the instructions in the question and "Use Ohm's law" to calculate the resistance.
Ohm's Law: Resistance = (voltage) / (current)
Resistance = (10 v) / (5 A)
<em>Resistance = 2 ohms</em>
Answer:
C. 5.6 × 10^11 N/C
Explanation:
The electric field
at a distance
from a charge
is given by

where
is the coulomb's constant.
Now, in our case

;
therefore,


which is choice C from the options given<em> (at least it resembles it).</em>
If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that, the total momentum of an isolated system is constant.
The downward velocity of thes gases is calculated as follows;
v1(m1 + m2) = v2(m2)
305(1000 + 25) = v2(25)
312,625 = 25v2
v2 = 312,625/25
v2 = 12,505 m/s
Thus, If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
Learn more about linear momentum here: brainly.com/question/7538238
Answer:
D.
Explanation:
A solar system is a collection of planets, their moons, and other objects in orbit around a central star.