1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
6

Calculate the amount of force required to produce motion in a car of 1000kg with an acceleration of 5m/s square.​

Physics
2 answers:
Liula [17]3 years ago
6 0

Here's the solution,

  • mass = 1000 kg
  • acceleration = 5 m/s²

now, we know

\large \boxed{f = m \times a}

so,

  • \hookrightarrow \: f = 1000 \times 5
  • \hookrightarrow \: f = 5000

The force required is 5000 Newtons.

atroni [7]3 years ago
4 0

Answer:

5000 N

Explanation:

F=ma

=1000*5

=5000N

You might be interested in
Which material produces static charge when rubbed?
natita [175]
Many materials produce static charge

5 0
3 years ago
Saturn moves in an orbit around the Sun with radius 10 AU. How many degrees does it move on the Celestial in one year? (Hint: Ca
Lana71 [14]

Answer:

B. About 12 degrees

Explanation:

The orbital period is calculated using the following expression:

T = 2π*(\sqrt{\frac{r^3}{Gm}})

Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.

Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.

Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:

\frac{Tsaturn}{Tearth} = \sqrt{\frac{rSaturn^3}{rEarth^3} } = \sqrt{10^3}}

Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be \sqrt{10^3}} years, or 31.62 years.

We find the amount of degrees it moves in 1 year:

1year * \frac{360degrees}{31.62years} = 11.38 degrees

or about 12 degrees.

6 0
3 years ago
You launch a cannonball at an angle of 35° and an initial velocity of 36 m/s (assume y = y₁=
velikii [3]

Answer:

Approximately 4.2\; {\rm s} (assuming that the projectile was launched at angle of 35^{\circ} above the horizon.)

Explanation:

Initial vertical component of velocity:

\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}.

The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing y_{1} is the same as the altitude y_{0} at which this projectile was launched: y_{0} = y_{1}.

Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is 20.6\; {\rm m\cdot s^{-1}} (upwards,) the vertical velocity right before landing would be (-20.6\; {\rm m\cdot s^{-1}}) (downwards.) The change in vertical velocity is:

\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}.

Since there is no drag on this projectile, the vertical acceleration of this projectile would be g. In other words, a = g = -9.81\; {\rm m\cdot s^{-2}}.

Hence, the time it takes to achieve a (vertical) velocity change of \Delta v_{y} would be:

\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}.

Hence, this projectile would be in the air for approximately 4.2\; {\rm s}.

8 0
1 year ago
Read 2 more answers
. Friction is a rubbing force that ___________ a spinning yo-yo.
Advocard [28]
The yo-yo speeds up when you rub it
3 0
2 years ago
Read 2 more answers
Which statement describes a controlled experiment?
olga_2 [115]

Answer:

In a controlled experiment, an independent variable (the cause) is systematically manipulated and the dependent variable (the effect) is measured; any extraneous variables are controlled. The researcher can operationalize (i.e. define) the variables being studied so they can be objectivity measured.

7 0
3 years ago
Other questions:
  • Describe the sequence of events in the lithification of a sandstone
    5·2 answers
  • I need to explain how objects can have the same volume but different mass. Help??
    13·1 answer
  • A 3-kilogram ball is accelerated from rest to a speed of 10 m/sec.<br><br> b. What is the impulse?
    7·1 answer
  • These three members of the Nile gas family have one property in common because they are gases at room temperature. That is they
    5·1 answer
  • A stone is dropped from rest from the top of a cliff into a pond below. If its initial height is 10 m, what is its speed when it
    10·1 answer
  • A hydrogen fuel cell supplies power for a small motor. the fuel cell delivers a current of 0.5 a and a voltage of 0.43 v. what i
    6·1 answer
  • Several large firecrackers are inserted into the holes of a bowling ball, and the 6.3 kg ball is then launched into the air with
    5·1 answer
  • What is the frequency of an X-ray with wavelength 0.13 nm ? Assume that the wave travels in free space. Express your answer to t
    10·1 answer
  • The force measuring instrument is called
    12·2 answers
  • a student that weighs 436 n is standing on a scale in an elevator and notices that the scale reads 498 n. from this information,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!