(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Answer:
Explanation:
Given that,
Force applied to pedal F = 50N
Angular velocity ω = 10rev/s
We know that, 1rev = 2πrad
Then, ω = 10rev/s = 10×2π rad/s
ω = 20π rad/s
Length of pedal r = 30cm = 0.3m
Power?
Power is given as
P = τ×ω
We need to find the torque τ
τ = r × F
Since r is perpendicular to F
Then, τ = 0.3 × 50
τ = 15 Nm
Then,
P = τ×ω
P = 15 × 20π
P = 942.48 Watts
power delivered to the bicycle by the athlete is 942.48 W
galactic disk
The galactic disk is a thinned, leveled out distribution of stars which includes the typical to the largest and brightest. The Sun is in the Milky Way and lies amongst the majority of the stars where it bulges.