Answer:
Final temperature, 
Explanation:
Given that,
Mass of silver ring, m = 4 g
Initial temperature, 
Heat released, Q = -18 J (as heat is released)
Specific heat capacity of silver, 
To find,
Final temperature
Solution,
The expression for the specific heat is given by :





So, the final temperature of silver is 21.85 degrees Celsius.
Answer:
U = (ε0AV^2) / 2d
Explanation:
Where C= capacitance of the capacitor
ε0= permittivity of free space
A= cross sectional area of plates
d= distance between the plates
V= potential difference
First, the capacitance of a capacitor is obtained by:
C = ε0A/d.
Starting at the formula , U= (CV^2)/2. Formula for energy stored in a capacitor
Substitute in for C:
U = (ε0A/d) * V^2 / 2
Hence:
U = (ε0AV^2) / 2d
Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.

F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that

Inserting this into Hooke's Law

computing it for x,

This is the model which will tell the length of the spring against change in the mass located in the pan.
In order to be considered a vector, a quantity must include Magnitude (A) and Direction (D).
Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg