From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Answer:
1.327363 m/s
0.00090243 m
Explanation:
u = Initial velocity
v = Final velocity
m = Mass of flea
Energy

The velocity of the flea when leaving the ground is 1.327363 m/s

The flea will travel 0.00090243 m upward
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm
Answer:
The answer is A.
Explanation:
The diagram shows the light ray bending away from the normal. Light rays bend away from the normal when their speed increases. This means that in the diagram, the light ray moves from a medium in which light has a lower speed to a medium in light has a higher speed. The only choice where the speed of light increases from A to B is answer A. So that has to be the answer.
Hi there!
Recall that:
Change in momentum = mass × change in velocity
Or:
Δp = mΔv = m(vf - vi)
Plug in the given values. We can assign east to be positive and west to be negative in this instance (Velocity is a vector with direction).
Thus:
Δp = (1)(-21 - 10) = -31 kgm/s OR 31 kgm/s WEST.
The correct answer is B.
Change in momentum is EQUIVALENT to the quantity of IMPULSE.
The correct answer is H.