As electrons move through the conductor, some collide with atoms, other electrons, or impurities in the metal.

<h2><em>calculate</em></h2>
<em>
</em>
<h2><em>reduce </em><em>the </em><em>numbers</em></h2>
<em>
</em>
<h2><em>multiply</em></h2>
<em>
</em>
<h2><em>there </em><em>for </em><em>we </em><em>have </em><em>a </em><em>solution</em><em> to</em><em> the</em><em> </em><em>equation</em></h2>
<em>hope </em><em>it</em><em> helps</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>
<em>mark </em><em>me</em><em> as</em><em> brainlist</em><em> plss</em>
Answer:
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action.
Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.
By Newton's second law,
- the net horizontal force acting on the beam is

where
are the magnitudes of the tensions in ropes 1 and 2, respectively;
- the net vertical force acting on the beam is

where
and
.
Eliminating
, we have





Solve for
.


