Answer:
The molarity of the dissolved NaCl is 6.93 M
Explanation:
Step 1: Data given
Mass of NaCl = 100.0 grams
Volume of water = 100.0 mL = 0.1 L
Remaining mass NaCl = 59.5 grams
Molar mass NaCl= 58.44 g/mol
Step 2: Calculate the dissolved mass of NaCl
100 - 59. 5 = 40.5 grams
Step 3: Calculate moles
Moles NaCl = 40.5 grams / 58.44 g/mol
Moles NaCl = 0.693 moles
Step 4: Calculate molarity
Molarity = moles / volume
Molarity dissolved NaCl = 0.693 moles / 0.1 L
Molarity dissolved NaCl = 6.93 M
The molarity of the dissolved NaCl is 6.93 M
Answer:
The number of molecules is 1.4140*10^24 molecules
Explanation:
To know the number of molecules, we need to determine how many moles of water we have, water has molar mass of 18.015g/mol
This means that one mole of water molecules has a mass of 18.015g.
42.3g * 1 mole H2O/18.015g
= 2.3480 moles H2O
We are using avogadros number to find the number of molecules of water
2.3480 H2O * 6.022*10^ 23moles/ 1mole of H2O
That's 2.3480 multiplied by 6.022*10^23 divided by 1 mole of H2O
Number of molecules = 1.4140 *10^24 molecules
Answer: 4.96 moles
Explanation:
C5H12 is the chemical formula for pentane, the fifth member of the alkane family.
Given that,
number of moles of C5H12 = ?
Mass in grams = 357.4 g
Molar mass of C5H12 = ?
To get the molar mass of C5H12, use the atomic mass of carbon = 12g; and Hydrogen = 1g
i.e C5H12 = (12 x 5) + (1 x 12)
= 60g + 12g
= 72g/mol
Now, apply the formula
Number of moles = Mass / molar mass
Number of moles = 357.4g / 72g/mol
= 4.96 moles
Thus, 4.96 moles of C5H12 that are contained in 357.4 g of the compound.