Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of the time taken to complete one full cycle.
Frequency (<em>f</em>) will be calculated first as
<em>f </em>= <em>N </em>÷<em> t</em>
where <em>N </em>is the number of cycles and <em>t </em>is the time taken to complete one full cycle. The unit for frequency is Hertz (Hz).
To calculate the period, <em>T, </em>the formula below will be used
<em>T </em>= 1 ÷ <em>f</em>
The unit for period is secs
Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). If an atom gains or loses one or more electrons, it becomes an ion. If it gains one or more electrons, it now carries a net negative charge, and is thus "anionic."
Answer:
Electric Field Strength E₀ = E₀ = Constant
Explanation:
The Electric Filed Strength E₀ to an Infinite uniformly charge large sheet is constant how far is it i.e. it is independent of the distance away from the uniformly charge sheet.
Formula: E₀ = σ / 2 ε₀
Answer:
a) 2.4 mm
b) 1.2 mm
c) 1.2 mm
Explanation:
To find the widths of the maxima you use the diffraction condition for destructive interference, given by the following formula:

a: width of the slit
λ: wavelength
m: order of the minimum
for little angles you have:

y: height of the mth minimum
a) the width of the central maximum is 2*y for m=1:

b) the width of first maximum is y2-y1:
![w=y_2-y_1=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[2-1]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_2-y_1%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B2-1%5D%3D1.2mm)
c) and for the second maximum:
![w=y_3-y_2=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[3-2]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_3-y_2%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B3-2%5D%3D1.2mm)