A decrease in the amount of gas in a container will mean a decrease in pressure.
The answer would be .5 mols because you take the total amount of grams, which is 20, and you had up the molar mass of sodium hydroxide, which would be 40. After you have this you would set this up as a stochiometry equation. With 1 mol on top you dived 20/40 to cancel out your grams. This leaves you with .5 mols
ツ here your answer

- A)Potassium bromide(aq) + Barium iodide(aq) → Potassium iodide(aq) + Barium bromide(s)
- 2KBr(aq)+BaI2(aq) → 2KI(aq)+BaBr2(s)
- B)Balance the Chemical Equation for the reaction of calcium carbonate with hydrochloric acid:
- CaCO3+ HCl -> CaCl2 + CO2 + H2O To balance chemical equations we need to look at each element individually on both sides of the equation. calcium carbonate is a chemical compound with the formula CaCO3.
<em><u>M</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em>
Answer:
63.9 grams. Yes, the Nacl was converted. Maximum possible ppm is 540ppm.
Explanation:
I this is college level chemistry not regular high school chem.
<u>Answer:</u> The correct answer is Option 5.
<u>Explanation:</u>
- To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the NaOH.
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get:

- To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base.
We are given:

Putting values in above equation, we get:

Hence, the correct answer is Option 5.