Answer:
<h3>The answer is 41.05 %</h3>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
actual density = 0.95 g/mL
error = 0.95 - 0.56 = 0.39
So we have

We have the final answer as
<h3>41.05 %</h3>
Hope this helps you
Covalent bonds are formed between atoms which have
<span>- unsatisfied valency </span>
<span>- no inert gas electronic configuration </span>
<span>- These are directional bonds </span>
<span>- formed by sharing of electrons </span>
<span>Intermolecular forces </span>
<span>- much weaker than covalent bond </span>
<span>- These are not directional (except Hydrogen bonds) </span>
<span>- These are more electrostatic in nature </span>
<span>- exist between stable molecules </span>
<span>- can be Hydrogen bonding, dipole-dipole and induced dipole-induced dipole </span>
Increases the concentration of hydronium ions in an aqueous solution
Answer:
24.5%
Explanation:
You just add up the atomic masses.
Ca - 40.078
Cl2 - 35.4527 x 2 = 70.9054
------ 110.9834
H4 - 1.00794 x 4 = 4.03176
O2 - 31.9998
------ 36.03056
TOTAL - 147.01396
So the water is 36.03056/147.01396 = .245082576 but that is only accurate to three decimals (because the mass of Ca was only given to three decimals) so we write .245 and that is 24.5%
This is not my answer but I found it on Yahoo answers and it was answered by Anonymous.
The sample of argon gas that has the same number of atoms as a 100 milliliter sample of helium gas at 1.0 atm and 300 is 100. mL at 1.0 atm and 300. K
The correct option is D.
<h3>What is the number of moles of gases in the given samples?</h3>
The number of moles of gases in each of the given samples of gas is found below using the ideal gas equation.
The ideal gas equation is: PV/RT = n
where;
- P is pressure
- V is volume
- n is number of moles of gas
- T is temperature of gas
- R is molar gas constant = 0.082 atm.L/mol/K
Moles of gas in the given helium gas sample:
P = 1.0 atm, V = 100 mL or 0.1 L, T = 300 K
n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
For the argon gas sample:
A. n = 1 * 0.05 / 0.082 * 300
n = 0.00203 moles
B. n = 0.5 * 0.05 / 0.082 * 300
n = 0.00102 moles
C. n = 0.5 * 0.1 / 0.082 * 300
n = 0.00203 moles
D. n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
Learn more about ideal gas equation at: brainly.com/question/24236411
#SPJ1