Answer:
50 MHz
Explanation:
The relation between frequency and wavelength is shown below as:

c is the speed of light having value 
Given, Wavelength = 6 m
Thus, Frequency is:



Also,
Also, 1 Hz =
MHz
So,<u> Frequency = 50 MHz.</u>
We are given –
- Final velocity of car is, v= 0
- Initial velocity of car is, u= 100 km/hr
- Time taken, t is = 3 minutes or 180 sec
Here–






Now –
____________________________










_______________________________
Answer:
Explanation:
We are given two reactions which are the two steps of a mechanism:
......(1)
.......(2)
To determine the net chemical equation, we will multiply equation 2
.......(3)
Adding (1) and (3)
Thus, the net balanced chemical equation is:
Answer:
Explanation:
Chloride is described as an extended structure because its atoms are arranged following an endless repeating pattern and are of distinct ratio
Crystals and polymers mostly form extended structures as seen in the formation of sodium chloride whereby the ions in the compound are arranged following a repeating pattern. ( i.e. has a giant ionic structure ).
Chloride is a considered an extended structure because in sodium chloride it forms an unending repeated pattern of ions which makes it a perfect example of an extended structure.
Hence we can conclude that Chloride can be described as an extended structure because its atoms are arranged following a repeating pattern and are of distinct ratio.