To solve this problem we will apply the concepts related to relative speed. We will obtain it from the deduction made on the aircraft as a speed of the two components that act on it. Through the kinematic equations of motion, we can then calculate the time required.
The airspeed of airplane is 100km/h while the wind is blowing from the coast out to sea at 40km/h. Wind is blowing from the coast out to sea means that it opposes the airspeed. Therefore, resultant relative speed of airplane is

Total distance is 60km then with this net velocity we have that the required time is

Where,
x = Displacement
t = Time
v = Velocity
Replacing,


Therefore the time taken by the plane to reach the shore is 60 minutes
The horizontal is s or displacement
The vertical is t or time
ligma nuts is it the answer bro ;)
(a) 25lx
(b) 11.11lx
<u>Explanation:</u>
Illuminance is inversely proportional to the square of the distance.
So,

where, k is a constant
So,
(a)
If I = 100lx and r₂ = 2r Then,

Dividing both the equation we get

When the distance is doubled then the illumination reduces by one- fourth and becomes 25lx
(b)
If I = 100lx and r₂ = 3r Then,

Dividing equation 1 and 3 we get

When the distance is tripled then the illumination reduces by one- ninth and becomes 11.11lx
This statement is false. Increasing the two objects' mass (I'm guessing) will actually increase their gravitational force. This is because of the equation:

If the distance was increased, then the statement would be true, but since you are increasing mass, which is proportional to the Force of Gravity, you are in fact, increasing the gravitational force between the two objects.