Answer:
the formula for calculating acceleration is ending speed minus starting speed divided by time.
If gravity had no effect on a ball after you threw it ... and there also
were no air to slow it down ... then the ball would continue traveling
in a straight line, in whatever direction you threw it.
That's the heart and soul of Newton's laws of motion ... any object
keeps moving at the same speed, and in a straight line in the same
direction, until a force acts on it to change its speed or direction.\
If you threw the ball horizontally, then it would keep moving in the
same direction you threw it. But don't forget: The Earth is not flat.
The Earth is a sphere. So, as the ball kept going farther and farther
in the same straight line, the Earth would curve away from it, and it
would look like the ball is getting farther and farther from the ground.
The restoring force of the spring cancels the weight of the mass, so by Newton's second law
∑ F = F[spring] - mg = 0 ⇒ F[spring] ≈ 45.1 N
where m = 4.60 kg and g = 9.80 m/s². Then the spring constant is k such that by Hooke's law,
F[spring] = k x
where x = 0.0231 m. Then the spring constant is
k = F[spring]/x ≈ 1950 N/m
Using the formula:
w = m x g ....... eq1
here w is weight of the object.
m is mass of the object, and
g is the acceleration of gravity.
mass, m = 14 lbm (given)
acceleration of gravity, g= 32.0 ft/
Now, substituting the values in equation (1):
w = 14lbm x 32.0 ft/
= 448 lbm ft/
since, 1 lbf = 32.174 lbm ft/
so, w = 448 x 
w = 13.924lbf
Hence, the mass of an object is 13.924 lbf.
To know more about such questions, visit:
brainly.com/question/10936674
#SPJ4
You can find
1) time to hit the ground
2) initial velocity
3) speed when it hits the ground
Equations
Vx = Vxo
x = Vx * t
Vy = Vyo + gt
Vyo = 0
Vy = gt
y = yo - Vyo - gt^2 / 2
=> yo - y = gt^2 / 2
1) time to hit the ground
=> 8.0 = g t^2 / 2 => t^2 = 8.0m * 2 / 9.81 m/s^2 = 1.631 s^2
=> t = √1.631 s^2 = 1.28 s
2) initial velocity
Vxo = x / t = 6.5m / 1.28s = 5.08 m/s
3) speed when it hits the ground
Vy = g*t = 9.81 m/s * 1.28s = 12.56 m/s
V^2 = Vy^2 + Vx^2 = (12.56 m/s)^2 + (5.08 m/s)^2 = 183.56 m^2 / s^2
=> V = √ (183.56 m^2 / s^2) = 13.55 m/s