Emf = d (phi-B) / dt
<span>B dA/dt, where dA/dt is the area swept out by the wire per unit time. </span>
<span>0.88 V = (0.075 N/(A m)) (L)(4.20 m/s), so </span>
<span>L = (0.88 J/C) / [ (0.075 N s/C m)(4.2 m/s) ] = about 3 meters</span>
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer:
<em>Because </em><em>of </em><em>the </em><em>given </em><em>stranded</em><em> </em><em>wires </em><em>is </em><em>that </em><em>it's </em><em>thinner </em><em>there </em><em>are </em><em>even </em><em>more </em><em>air </em><em>gaps </em><em>and </em><em>a </em><em>greater </em><em>surface</em><em> </em><em>area </em><em>in </em><em>the </em><em>individual</em><em> </em><em>stranded</em><em> wires</em><em> </em><em>then </em><em>therefore </em><em>it </em><em>carries </em><em>less </em><em>current </em><em>than </em><em>similar </em><em>solid </em><em>wires </em><em>can </em><em>with</em><em> </em><em>each</em><em> </em><em>type </em><em>of </em><em>wire </em><em>,</em><em> insulations</em><em> </em><em>technologies </em><em>can </em><em>greatly</em><em> </em><em>assist </em><em> </em><em>in </em><em>reducing</em><em> </em><em>power </em><em>dissipation</em><em>.</em>
I can't answer this question without a figure. I've found a similar problem as shown in the first picture attached. When adding vectors, you don't have to add the magnitudes only, because vectors also have to factor in the directions. To find the resultant vector C, connect the end tails of the individual vectors.
<em>The red line (second picture) represents the vector C.</em>