Explanation:
It is given that,
Mass of the passenger, m = 75 kg
Acceleration of the rocket, 
(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :
F = m a

F = 3675 N
Ratio, 

So, the ratio between the horizontal force and the weight is 5 : 1.
(b) The magnitude of total force the seat exerts against his body is F' i.e.


F' = 3747.7 N
The direction of force is calculated as :



Hence, this is the required solution.
Answer:
0.36s, 2.3s
Explanation:
Let gravitational acceleration g = 9.81 m/s2. And let the throwing point as the ground 0 for the upward motion. The equation of motion for the rock leaving your hand can be written as the following:

where s = 4 m is the position at 4m above your hand.
is the initial speed of the rock when it leaves your hand. g = -9.81m/s2 is the deceleration because it's in the downward direction. And t it the time(s) it take to get to 4m, which we are looking for


t = 2.3 or t = 0.36
According to newton's 3rd law of motion,
For every action, there is equal and opposite reaction. So if we move a body against a rough surface, there were be reaction against the force applied.
So using conservation of energy, we know:
Work done to move a body = Work done against Friction
So, Force applied * distance moved = coefficient of Friction * Normal Reaction * distance moved
For a body moving against a normal surface, Normal Reaction (R) = mg
or, mass * acceleration * distance (s) = ∪ * R * distance(s)
or, mass * (v^2/2s) = ∪ * mass * gravity
Now, s = stopping distance = v²/ 2∪g
so, using given value,∪=0.05,
s = v2/2*0.05*g
We know, g = 10, so s = v²/(2*0.05*10) = v²
where v = initial velocity
Answer:
A
Explanation:
It will increase cause the more branches you add the total current will increase
Answer: Friction stops things from sliding apart. If there was no friction everything would slide to the lowest point. With no friction the only possible movement would be falling to a lower point under gravity.
Explanation: In a frictionless world, more objects would be sliding about, clothes and shoes would be difficult to keep on and it would be very difficult for people or cars to get moving or change direction. Students should be encouraged to consider how dependant their world is on the beneficial action of friction. Humans and other objects will become weightless without gravity. If we have no gravity force, the atmosphere would disappear into space, the moon would collide with the earth, the earth would stop rotating, we would all feel weightless, the earth would collide with the sun, and as a consequence.