Answer:
Ionic Exergonic
Explanation:
Exergonic reactions have negative Gibbs free energy and hence are spontaneous.
Endergonic reactions have negative Gibbs free energy and are non-spontaneous and low temperature.
Endergonic reactions require external supply of energy. But such reactions can be made spontaneous or favorable by coupling with exergonic reaction via a common intermediate.
Therefore, the correct answer is Ionic Exergonic.
To determine the number of formula units in a sample of a compound you need to divide the number of grams by the formula mass. The formula mass of NaCl is 23 g/mol + 35.5 g/mol = 58.5 g/mol, and the number of grams of the sample is 0.14 mg * 1 g/ 1000 mg = 0.00014 g. Then the answer is 0.00014 g / 58.5 g = 2.30 * 10^ -6, which rounded to two significant figures is 2.4 * 10^ -6. So<span> the answer is 2.4 * 10^-6 or 0.0000024</span>
Hi there! Relative order is an advanced order type and a absolute date is the process of determing a age.
<h2>Ultraviolet Light</h2>
Explanation:
- The energy of a photon that will be released if an electron falls from the n= 2 orbit (excited state) to the n0 = 1 orbit (ground state) is of ultraviolet light.
- In the ultraviolet part of the spectrum, a photon having an energy of 10.2 eV has a wavelength of 1.21 x 10-7 m.
- Hence, when an electron wants to jump or it gets excited from the first level to the second level that is from n = 1 orbit to n = 2 orbits, it must absorb a photon of ultraviolet light.
- But,When an electron falls from n = 2 orbit to n = 1 orbit or from n = 2 orbit(excited state) to n = 0 orbit(groubd state), it emits a photon of ultraviolet light.
<h3>Answer:</h3>
#1. Ca²⁺
# 2. Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
#3. 3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
<h3>Explanation:</h3>
The question above concerns solubility of salts or ions in water.
The solution given contains Ag+, Ca2+, and Co2+ ions.
- In the first case, when Lithium bromide is added to the solution, there is no white precipitate formed.
- In the second case, the addition of Lithium sulfate results in the formation of a precipitate because of the Ca²⁺ in the solution combined with the SO₃²⁻ from lithium sulfate to form an insoluble CaSO₄.
- The net ionic equation for the reaction is;
Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
- From the solubility rules, all sulfates are soluble except BaSO₄, CaSO₄, and PbSO₄.
- In the third case, the addition of Lithium phosphate results in the formation of a precipitate because Ag⁺ ions in the solution combine with phosphate ions ( PO₄³⁻) from lithium phosphate to form an insoluble salt, Ag₃PO₄.
- The net ionic equation for the reaction is;
3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
- According to solubility rules, all phosphates are insoluble in water except Na₃PO₄, K₃PO₄, and (NH₄)₃PO₄.