Answer:
See explanation
Explanation:
The elements in group form univalent positive ions and element in group 17 form univalent negative ions. Hence, when a group 1 element reacts with a group 17 element, a compound of the sort MX is formed. Hence, when a group 1 element reacts with bromine, a salt is formed with the general formula MBr.
Elements of group 1 are highly electro positive metals. They react with water to form the metal hydroxide and release hydrogen gas. Hence, when group 1 elements react with water, hydrogen gas is released.
A group 1 element forms a univalent positive ion while a group 16 element forms a divalent negative ion. Hence, when a groups 1 element reacts with oxygen, the compound formed must have the general formula M2O.
The reactivity of group 1 metal increases down the group hence Cs is the most reactive group 1 element.
Lithium displays a slightly different chemistry from other group 1 elements because of its small size.
<span>True. Row number on the periodic chart will be the same as the shell number.</span>
We use the following formula to calculate the number of atoms:
n (mol) = N(number of atoms) / NA
N(He) = n(mol) · NA
N(He) = 2,0 moles · 6.02·1023 = 12.04·1023 atoms
Yes, when molten candle wax solidifies it is a chemical reaction
<u>Explanation:</u>
Basically Wax is crystalline so once the candle light melts it freezes taking back the solid state to the room temperature.
When the room temperature is below the freezing point, the liquid candle wax, turns into solid state again, therefore this process is called solidification. The process of freezing or solidification is a process when an object turns liquid and freezes back to solid state.
Indeed, Yes, when molten candle wax solidifies it is a chemical reaction