Answer:
Explanation:
The atomic radius of elements are used to estimate the sizes of elements. The atomic radius is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state of metals.
To solve this problem we will obtain the atomic radius values of the given elements from a standard atomic radius table;
Si 111 pm
P 98 pm
Cl 79 pm
S 87pm
pm = picometer
We see that chlorine has the least atomic radius
Answer:
The correct answer is no.
Explanation:
Tellurium is a chemical element denoted by Te and having atomic number 52. It is mildly toxic, brittle, silver-white, and rare metalloid. The element is chemically related to sulfur and selenium, all three of which are chalcogens.
Oxygen is a chemical element, that is, a substance, which comprises only one kind of atom. Its official chemical symbol is O and exhibits an atomic number 8, this signifies that an atom of oxygen possesses eight protons in its nucleus. In the given question, it is not likely that tellurium would replace for oxygen, as the two elements are highly unlike.
3 Chlorine ions are required to bond with one aluminum ion.
In ionic bonds, metals atoms loses all its outermost shell electrons to form a cation. While, non metal atoms gains however many electrons in order to make its outermost electron shell be 8 (or 2 if there's only one shell).
Therefore, form the periodic table, we can see that aluminum has a atomic number of 13, which makes its electron arrangement be 2,8,3. So, in order to form a aluminum ion, an Al atom must lose 3 electrons. On the other hand, Chlorine has a atomic number of 17, which means it has the electron configuration of 2,8,7. It has to gain only 1 electron to have 8 outermost shell electron.
Thereofre, 3 Chlorine atom are required to gain all 3 electrons given out by just 1 aluminum ion.