<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:



Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:

<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
![[HI]_{eq}=2x=(2\times 0.079)=0.158M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.079%29%3D0.158M)
![[H_2]_{eq}=(0.1-x)=(0.1-0.079)=0.0210M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D%280.1-x%29%3D%280.1-0.079%29%3D0.0210M)
![[I_2]_{eq}=0.0210M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.0210M)
Putting values in above expression, we get:

Hence, the value of equilibrium constant for the given reaction is 56.61
Answer:
1.22 L of carbon dioxide gas
Explanation:
The reaction that takes place is:
- CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
First we <u>determine which reactant is limiting</u>:
- Calcium carbonate ⇒ 10.0 g CaCO₃ ÷ 100 g/mol = 0.10 mol CaCO₃
- Hydrochloric acid ⇒ 0.100 L * 0.50 M = 0.05 mol HCl
So HCl is the limiting reactant.
Now we calculate the moles of CO₂ produced:
- 0.05 mol HCl *
= 0.05 mol CO₂
Finally we use PV=nRT to <u>calculate the volume</u>:
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
1 atm * V = 0.05 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Answer : The heat your body transfer must be, 25.1 kJ
Explanation :
Formula used :

or,

where,
Q = heat = ?
m = mass of water = 500.0 g
c = specific heat of water = 
= initial temperature = 
= final temperature = 
Now put all the given value in the above formula, we get:


Therefore, the heat your body transfer must be, 25.1 kJ
Answer:
The condor has a wing span of 10 feet
Explanation:
This can be solved by a simple rule of three
In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.
When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too. In this case, the rule of three is a cross multiplication.
When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease. In this case, the rule of three is a line multiplication.
In this problem, our measures are the wing span of the condon in meters and the wing span of the condor is feet. As the value of one of these measures increases, the other is going to increase too.
We know that 1m has 3.281 feet,
So we have the following rule of three:
1m - 3.281 feet
3.05m - x feet
x = 3.821*3.05
x = 10 feet
The condor has a wing span of 10 feet