Explanation:
Moles=mass/molar mass
moles × molar mass = mass
0.206 x 119= mass
Mass= 24. 51grams
Answer:
A. The children will be more likely to survive than if they did not have the trait.
Explanation:
Process of elimination
B. It will not affect the children.
Cannot be true, if it didn't impact the children then how would survival of the fittest work?
D. The children will be able to adapt if the environment changes.
That just... not how adapting works when it comes to evolution.
C. The children will be more likely to survive than their parents were
Everyone has the same trait, everyone is equal in that regard.
A. The children will be more likely to survive than if they did not have the trait.
"Suppose a pair of animals has a trait that helps them survive in their environment." The trait helps them survive. Not having the trait makes them less likely to survive. A is correct
Kg it it ig itchy it ig ig igxgixigxigc
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol. This means for every mole of ice we melt we must apply 6.02 kj of heat. We can calculate the heat needed with the following equation:
Q = N x ΔH
where:
Q = heat
N = moles
ΔH = enthalpy
In this problem we would like to calculate the heat needed to melt 35 grams of ice at 0 °C. This problem can be broken into three steps:
1. Calculate moles of water
2. multiply by the enthalpy of fusion
3. Convert kJ to J.
Step 1 : Calculate moles of water
![[ 75g ] x (\frac{1 mol}{18.02g} ) =](https://tex.z-dn.net/?f=%5B%2075g%20%5D%20x%20%28%5Cfrac%7B1%20mol%7D%7B18.02g%7D%20%29%20%3D)
Step 2 : Multiply by enthalpy of fusion
Q = N × ΔH = <em> [ Step 1 Answer ]</em> × 6.02 =
Step 3 : Convert kJ to J
![[ Step 2 Answer ] x (\frac{1000j}{1kJ} ) =](https://tex.z-dn.net/?f=%5B%20Step%202%20Answer%20%5D%20x%20%28%5Cfrac%7B1000j%7D%7B1kJ%7D%20%29%20%3D)
Finally rounding to 2 sig figs (since 34°C has two sig figs) we get
Q Would Equal ____
Answer:
The specific heat capacity of a metal is 1.31 J/g°C = C
Explanation:
A classical excersise of calorimetry to apply this formula:
Q = m . C . ΔT
177.5 J = 15 g . C (34°C - 25°C)
177.5 J = 15g . 9°C . C
177.5 J /15g . 9°C = C
1.31 J/g°C = C