Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Gravity is the force that attracts all matter to each other.
Explanation:
Sir Isaac Newton discovered Gravity when he saw a falling apple while thinking about the forces of nature.
Gravity is a fundamental force that causes objects to have weight. Gravity acts on all matter and is a function of both mass and distance. Each object attracts every other object with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. The force of attraction is, however, negligible between most objects because of their small size.
Gravitational force is given as:

Where G is gravitational constant and is equal to 6.674×10−11 m³⋅kg⁻¹⋅s⁻²
m₁ and m₂ are the masses of the two objects.
r is the distance between the two objects.
The gravity is what makes an apple fall on the ground and gravity is the force that keeps us on the ground.
Keywords: gravity, Newton, Force, weight
Learn more about gravitational force from brainly.com/question/14321566
#learnwithBrainly
Answer:
μ = 0.309
Explanation:
coefficient of kinetic friction is defined as the ratio of two forces, friction force and the normal force acting on the object.
θ = arctan(15/100)= 8.531⁰
In the vertical direction:
N = mgcosθ = 100 *9.8 *cos(8.531) = 970N
law of conservation of energy implies
mgsinθ - μNx = 1/2m(v₂²-v₁²)
100*9.8*sin (8.531) - μ(970*2) = 1/2(100)(0²-3²)
150.6 - 1940μ = 450
- 1940μ = -600.6
μ = 0.309
kinematic equation
v=u+at
v-u=at
v-u = 1x5
the driver will have increased speed by 5 m/s. actual speeds unknown