Answer:
With a tape measure.
Explanation:
We can use a big tape measure, this tape is in the market and we can use the one with the proper length that lets us measure different sections of the total length of the pool.
First establish the summation of the forces acting int the
ladder
Forces in the x direction Fx = 0 = force of friction (Ff) –
normal force in the wall(n2)
Forces in the y direction Fy =0 = normal force in floor (n1)
– (12*9.81) –( 60*9.81)
So n1 = 706.32 N
Since Ff = un1 = 0.28*706.32 = 197,77 N = n2
Torque balance along the bottom of the ladder = 0 = n2(4 m) –
(12*9.81*2.5 m) – (60*9.81 *x m)
X = 0.844 m
5/ 3 = h/ 0.844
H = 1.4 m can the 60 kg person climb berfore the ladder will
slip
The magnitude of the current in wire 3 is (I₃)= 0.33A
<h3>How to calculate the value of the magnitude of the current in wire 3 ?</h3>
To calculate the magnitude of the current in wire 3 we are using the Kirchhoff’s current law,
I₁ + I₂ + I₃ = 0
Where we are given,
I₁ = current in wire 1
=0.40 A.
I₂ = current in wire 2
= -0.73 A.
We have to calculate the magnitude of the current in wire 3, I₃
Now we put the known values in above equation, we get,
I₁ + I₂ + I₃ = 0
Or, I₃ = -.(I₁ + I₂)
Or, I₃ = -.(0.40 - 0.73)
Or, I₃ = 0.33 A
From the above calculation, we can conclude that the current in wire 3 is I₃ = 0.33 A
Learn more about current:
brainly.com/question/25537936
#SPJ4
Answer:
r1 -r2 = 3.75cm
Explanation:
Check the attached file for the solution