1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
3 years ago
12

A short framing member that fills the space between the rough sill and the soleplate is a

Engineering
1 answer:
Jet001 [13]3 years ago
5 0

A short framing member that fills the space between the rough sill and the soleplate is a cripple stud.

(HAVE A GOOD DAY!!!)

You might be interested in
1. A glass window of width W = 1 m and height H = 2 m is 5 mm thick and has a thermal conductivity of kg = 1.4 W/m*K. If the inn
emmasim [6.3K]

Answer:

1. \dot Q=19600\ W

2. \dot Q=120\ W

Explanation:

1.

Given:

  • height of the window pane, h=2\ m
  • width of the window pane, w=1\ m
  • thickness of the pane, t=5\ mm= 0.005\ m
  • thermal conductivity of the glass pane, k_g=1.4\ W.m^{-1}.K^{-1}
  • temperature of the inner surface, T_i=15^{\circ}C
  • temperature of the outer surface, T_o=-20^{\circ}C

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

\dot Q=k_g.A.\frac{dT}{dx}

here:

A = area through which the heat transfer occurs = 2\times 1=2\ m^2

dT = temperature difference across the thickness of the surface = 35^{\circ}C

dx = t = thickness normal to the surface = 0.005\ m

\dot Q=1.4\times 2\times \frac{35}{0.005}

\dot Q=19600\ W

2.

  • air spacing between two glass panes, dx=0.01\ m
  • area of each glass pane, A=2\times 1=2\ m^2
  • thermal conductivity of air, k_a=0.024\ W.m^{-1}.K^{-1}
  • temperature difference between the surfaces, dT=25^{\circ}C

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>

\dot Q=k_a.A.\frac{dT}{dx}

\dot Q=0.024\times 2\times \frac{25}{0.01}

\dot Q=120\ W

5 0
3 years ago
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4
Vladimir [108]

Answer:

maximum stress is 2872.28 MPa

Explanation:

given data

radius of curvature = 3 × 10^{-4} mm

crack length = 5.5 × 10^{-2} mm

tensile stress = 150 MPa

to find out

maximum stress

solution

we know that  maximum stress formula that is express as

\sigma m = 2 ( \sigma o ) \sqrt{\frac{a}{\delta t}}     ......................1

here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack

so put here all value in equation 1 we get

\sigma m = 2 ( \sigma o) \sqrt{\frac{a}{\delta t}}  

\sigma m = 2(150) \sqrt{ \frac{\frac{5.5*10^{-2}}{2}}{3*10^{-4}}}  

σm = 2872.28 MPa

so maximum stress is 2872.28 MPa

8 0
3 years ago
A seamless pipe 800mm diameter contains a fluid under a pressure of 2N/mm2. If the permissible tensile stress is 100N/mm2, find
Bad White [126]

Answer:

8 mm

Explanation:

Given:

Diameter, D = 800 mm

Pressure, P = 2 N/mm²

Permissible tensile stress, σ = 100 N/mm²

Now,

for the pipes, we have the relation as:

\sigma=\frac{\textup{PD}}{\textup{2t}}

where, t is the thickness

on substituting the respective values, we get

100=\frac{\textup{2\times800}}{\textup{2t}}

or

t = 8 mm

Hence, the minimum thickness of pipe is 8 mm

3 0
3 years ago
A pipeline (NPS = 14 in; schedule = 80) has a length of 200 m. Water (15℃) is flowing at 0.16 m3/s. What is the pipe head loss f
dangina [55]

Answer:

Head loss is 1.64

Explanation:

Given data:

Length (L) = 200 m

Discharge (Q) = 0.16 m3/s

According to table of nominal pipe size , for schedule 80 , NPS 14,  pipe has diameter (D)= 12.5 in or 31.8 cm 0.318 m

We know, head\ loss  = \frac{f L V^2}{( 2 g D)}

where, f = Darcy friction factor

V = flow velocity

g = acceleration due to gravity

We know, flow rate Q = A x V

solving for V

V = \frac{Q}{A}

    = \frac{0.16}{\frac{\pi}{4} (0.318)^2} = 2.015 m/s

obtained Darcy friction factor  

calculate Reynold number (Re) ,

Re = \frac{\rho V D}{\mu}

where,\rho = density of water

\mu = Dynamic viscosity of water at 15 degree  C = 0.001 Ns/m2

so reynold number is

Re = \frac{1000\times 2.015\times 0.318}{0.001}

            = 6.4 x 10^5

For Schedule 80 PVC pipes , roughness (e) is  0.0015 mm

Relative roughness (e/D) = 0.0015 / 318 = 0.00005

from Moody diagram, for Re = 640000 and e/D = 0.00005 , Darcy friction factor , f = 0.0126

Therefore head loss is

HL = \frac{0.0126 (200)(2.015)^2}{( 2 \times 9.81 \times 0.318)}

HL = 1.64 m

7 0
3 years ago
A 6V battery is connected in series with two bulbs. What would the voltage drop be across each bulb?
Vitek1552 [10]

Answer:

3V

Explanation:

6 0
3 years ago
Other questions:
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • What determines the depth of the foundation excavation
    9·2 answers
  • DRIVERS ED
    15·2 answers
  • Describe how a cavity wall works and sketch its major construction features. What aspects of cavity wall construction are most c
    5·1 answer
  • If Ori gives a friend three reasons for preferring soccer to basketball, that is an algorithm.
    14·2 answers
  • X+3=2<br>x=??<br><br><br><br>No spamming​
    11·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • How can you contribute to achieved the mission of NSTP during pandemic in your society?
    7·1 answer
  • Which type of elevated stand does not need a tree?
    13·1 answer
  • Select three types of lines that engineers use to help represent the shape of a design in a sketch.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!