Answer:
The fluid property responsible for the development of velocity boundary layer is majorly the fluid's viscosity.
For non-viscous fluids (in theory, because no fluid is entirely non-viscous), there will be no velocity boundary layer.
Explanation:
The velocity boundary layer is the thin layer of viscous fluid that is in direct contact with the pipe surface. The velocity of fluid in this layer is 0 as fluid doesn't move in this layer.
This phenomenon is due to the viscosity of the fluid. Viscosity of the fluid refers to the internal friction that exists between fluid layers, so, the layer of fluid in contact with non-moving, static surface of the pipe experiences friction that causes this layer to not move, causing the fluid velocity to vary from 0 at this surface to the maximum value at the centre of the pipe, before the velocity begins to drop again until it reaches 0 at the other end of the circular pipe.
Since viscosity is the primary cause of this, non-viscous or inviscid fluids are saved from this phenomenon as their flows do not have the velocity boundary layer.
Although, a completely non-viscous or inciscid fluid is an idealized concept because all fluids will experience some sort of viscosity (no matter how small) between their fluid layers. Hence, a velocity boundary layer, no matter how thin (or of minute thickness), will exist in the flow of real fluids.
But, an idealized non-viscous or inviscid fluid will not have a velocity boundary layer.
Hope this Helps!!!
Answer:
Rubber
Explanation:
Rubber is not a conductor of electricity
Answer:
Because these subsystems interact with each other and the biosphere, they work together to influence the climate and make an affect on life all over the Earth.
Answer: (0,0)+ (1,0)= 1 lines upwards( suggesting that this is a line graph not saying it is but as an example) an (1,1) and (0,-1) all make a small square ( as this is a 2 dimensional graph that it has a negative side too,(below the positive side)) i hope this helps and is what you are looking for
Explanation:
Answer:
86 mm
Explanation:
From the attached thermal circuit diagram, equation for i-nodes will be
Equation 1
Similarly, the equation for outer node “o” will be
Equation 2
The conventive thermal resistance in i-node will be
Equation 3
The conventive hermal resistance per unit area is
Equation 4
The conductive thermal resistance per unit area is
Equation 5
Since
is given as 100,
is 40
is 300
is 25
Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain
Equation 6
Equation 7
From equation 6 we can substitute wherever there’s
with 3000L+40 as seen in equation 7 hence we obtain
The above can be simplified to be
-3000L=1.665-260
Therefore, insulation thickness is 86mm