The radius of the cylinder is equal to half the diameter:

The volume of the cylinder is given by:

where h is the heigth of the cylinder. Converting into meters,

And the density of the material will be given by the ratio between the mass and the volume:

Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
<h3><u>Answer;</u></h3>
electric potential
<h3><u>Explanation;</u></h3>
Electric potential is the electric potential energy per unit charge.
Mathematically; V =PE/q
Where; PE is the electric potential energy, V is the electric potential and q is the charge.
Electric potential is more commonly known as voltage. If you know the potential at a point, and you then place a charge at that point, the potential energy associated with that charge in that potential is simply the charge multiplied by the potential.
Answer:
i think it would be B, a large factory
Explanation:
The answer would be B, George Darwin :)