Phosphorus, copper, carbon monoxide, hydro cyanic acid, nitrates, potassium chlorate, and aniline are some of the examples of poison that can be identified by a color test according to forensic pathology.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
pH of the final solution = 9.15
Explanation:
Equation of the reaction: HCl + NH₃ ----> NH₄Cl
Number of moles of NH₃ = molarity * volume (L)
= 0.4 M * (300/1000) * 1 L = 0.12 moles
Number of moles of HCl = molarity * volume (L)
= 0.3 M * (175/1000) * 1 L = 0.0525 moles
Since all he acid is used up in the reaction, number of moles of acid used up equals number of moles of NH₄Cl produced
Number moles of NH₄Cl produced = 0.0525 moles
Number of moles of base left unreacted = 0.12 - 0.0525 = 0.0675
pOH = pKb + log([salt]/[base])
pKb = -logKb
pOH = -log (1.8 * 10⁻⁵) + log (0.0525/0.06755)
pOh = 4.744 + 0.109
pOH = 4.853
pH = 14 - pOH
pH = 14 - 4.853
pH = 9.15
Therefore, pH of the final solution = 9.15
In a water molecule, the oxygen atom and hydrogen atoms share electrons in covalent bonds, but the sharing is not equal. In the covalent bond between oxygen and hydrogen, the oxygen atom attracts electrons a bit more strongly than the hydrogen atoms.
Answer:
When electron jumps from high energy level to lower energy level.
Explanation:
The elctronic transition from one energy level to another energy level within the atom, always involve energy transitions.
The energy released or absorbed by electronic transition is always discrete and is called as " Photon". It means when electron jumps from when energy level to another energy level the energy released or absorbed is treated as photon emitted or absorbed.
When an electron jumps from higher energy level to a lower energy level, a photon of specific wavelength and specific energy is emitted in other words we can say that energy is released or emitted.
The energy of photon emitted or absorbed is easily calculated using Rydberg Formula which is simply the energy difference between the two energy levels and is given as under;
Ephoton = Eo ( 1 / n1^2 - 1 / n2 ^ 2)
In the above formula n1 is the initial energy level of electron and n2 is the final energy level of electron.
Eo = 13.6 eV ( Here "o" in Eo is in subscripts)
In n1 and n2 1 and 2 are in the subscripts.
^ represents that the disgits after them are exponents.
So by just putting the values of energy levels n1 and n2 we can easily calculate the value of energy of photon ( energy due to electronic transition) and compare the results that which transition will give high energy photon and which will give low energy photon.