-- pass the light through a lens
The path of the light is bent (refracted) to a new direction.
-- bounce the light off a shiny surface
The light is sent back (reflected) in the direction from which it arrived.
-- pass the light through a prism
The light is spread out according to the different wavelengths
that may be in it.
-- put something black in the light's path
The light is completely absorbed and is never seen again.
-- turn the light off
The source stops emitting light.
-- throw a towel over the lamp
The light is absorbed in the towel, and not seen outside of it.
Answer:
a) # lap = 301.59 rad
, b) L = 90.48 m
Explanation:
a) Let's use a direct proportions rule (rule of three). If one turn of the wire covers 0.05 cm, how many turns do you need to cover 24 cm
# turns = 1 turn (24 cm / 0.5 cm)
# laps = 48 laps
Let's reduce to radians
# laps = 48 laps (2 round / 1 round)
# lap = 301.59 rad
b) Each lap gives a length equal to the length of the circle
L₀ = 2π R
L = # turns L₀
L = # turns 2π R
L = 48 2π 30
L = 9047.79 cm
L = 90.48 m
The melting of polar ice is one effect of the greenhouse effect, or also global warming.
The greenhouse effect, as defined by Merriam-Webster, is "the <span>warming of the surface and lower atmosphere of a planet (as Earth or Venus) that is caused by conversion of solar radiation into heat in a process involving selective transmission of short wave solar radiation by the atmosphere, its absorption by the planet's surface, and reradiation as infrared which is absorbed and partly reradiated back to the surface by atmospheric gases".
In short, "</span>the warming of the surface and lower atmosphere of a planet".
Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs
Answer:
The biggest factor affecting coastal erosion is the strength of the waves breaking along the coastline. A wave's strength is controlled by its fetch and the wind speed. Longer fetches & stronger winds create bigger, more powerful waves that have more erosive power.
Explanation:
hope it helps !