<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
Your answer is C. Both gasoline and litter would need to be physically separated from the water, because neither bonds with the water.
Answer:
A. Producing certain synthetic materials could have a greater environmental impact than disposing of them.
Explanation
I just did this question and got it right.
Answer:
A. The balloons will increase to twice their original volume.
Explanation:
Boyle's law states that the pressure exerted on a gas is inversely proportional to the volume occupied by the gas at constant temperature. That is:
P ∝ 1/V
P = k/V
PV = k (constant)
P = pressure, V = volume.

Let the initial pressure of the balloon be P, i.e.
, initial volume be V, i.e.
. The pressure is then halved, i.e.

Therefore the balloon volume will increase to twice their original volume.