The electromagnetic force<span> holds atoms and molecules together.
like a magnet's pull on steel.</span>
B I think. Newtons first law talks about how if some thing is traveling at like 5 mph it’ll stay at 5 mph forever until the force is put on it.
We can solve the problem by using Newton's second law of motion:
where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:
The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
v₀ = 16.55 m/s
Explanation:
This motion of the ball can be modeled as a projectile motion with following data:
R = Range of Projectile = 27.5 m
θ = Launch Angle = 50°
g = acceleration due to gravity = 9.81 m/s²
v₀ = Initial Speed of Ball = ?
Therefore, using formula for range of projectile, we have:
<u>v₀ = 16.55 m/s</u>
Bernini's sculpture "Apollo and Daphne" implies a chase scene motion. Apollo and Daphne<span> is a life-sized Baroque marble </span>sculpture<span> by Italian artist Gian Lorenzo </span>Bernini<span>, executed between 1622 and 1625. Hope this answers the question. Have a nice day.</span>