Answer: molecular formula = C12H16O8
Explanation:
NB Mm CO2= 44g/mol
Mm H2O= 18g/mol
Moles of CO2 = 36.86/44=0.84mol
0.84mole of CO2 has 0.84 mol of C
Moles of H2O = 10.06/18= 0.56mol
1mol of H20 contains 1mol of O and 2 mol H,
Hence there are 0.56mol O and (0.56×2)mol H
Hence the compound contains
C= 0.84 mol H= 1.12mol O=0.56mol
Divide through by smallest number
C= 0.83/0.56= 1.5mol
H= 1.12/0.55= 2mol
O= 0.56/0.56= 1mol
Multiply all by 2 to have whole number of moles = 3:4:2
Hence empirical formula= C3H4O2
(C3H4O2)n = 288.38
[(12×3) + 4+(16×2)]n= 288.38
72n=288.38
n= 4
:. Molecular formula=(C3H4O2)4= C12H16O8
Distilled water is touched by man so it would probably be close to 300 degrees farenheit.......maybe.
0.25 moles of CO2 is present in 11 grams of CO2.
Explanation:
A mole represents the number of chemical entities in an element or molecule.
Number of moles of an element or molecule is determined by the formula:
The Number of moles (n) = weight of the atom given ÷ atomic or molecular weight of the one mole of the element or molecule.
Themolar mass of one mole of carbon dioxide is:
12+ ( 16×2)
= 44 gram/mole
The given weight is 44 grams of carbon dioxide.
Putting the values in the equation,
n= 11 gms÷44 gms/ mole
n = 0.25 mole
Just divide the two (2 / 0.05) and you will get your answer; there are 40 drops of bloodin the collection tube.
is the type of orbital hybridization of a central atom that has one lone pair and bonds to four other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about hybridization
brainly.com/question/22765530
#SPJ4