Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>
Answer:
Mechanical weathering is the physical breakdown of rock into smaller pieces. Chemical weathering is the breakdown of rock by chemical processes.
Explanation:
Mechanical weathering (also called physical weathering) breaks rock into smaller pieces. These smaller pieces are just like the bigger rock, just smaller. That means the rock has changed physically without changing its composition. The smaller pieces have the same minerals, in just the same proportions as the original rock.
Chemical weathering is the other important type of weathering. Chemical weathering is different from mechanical weathering because the rock changes, not just in size of pieces, but in composition Chemical weathering works through chemical reactions that cause changes in the minerals.
answer
1)the direction is from the body of a high temperature to a body at a low temperature
2)at the melting point and boiling point because the heat given is used to break down the forces holding the particles together so that they can change their state
3)In a gas because the particles of gases are held by weak forces thus have large intermolecular spaces between the particles while the solids are in a fixed position
4)heat is transferred to another body if they experience different temperatures
Answer:
(a) V1 = 8990.00 V
V2 = 8960.13 V
Explanation:
Parameters given:
q =3 mC
k = 8.99 * 10⁹ Nm²/C²
x1 = 3 m
x2 = 3.01 m
Electric potential is given as:
V = kq/r
Where
k = Coulombs constant
q = charge
r = distance
Potential at x1 is:
V1 = (8.99 * 10⁹ * 0.000003)/(3)
V1 = 8990.00V
Potential at x2 is:
V2 = (8.99 * 10⁹ * 0.003)/(3.01)
V2 = 8960.13 V