Answer is: there are 216 moles od water.
Chemical reaction: 2H₂ + O₂ → 2H₂O.
n(H₂) = 226 mol.
n(O₂) = 108 mol; limiting reactant.
From chemical reaction: n(O₂) : n(H₂O) = 1 : 2.
n(H₂O) = 2 · n(O₂).
n(H₂O) = 2 · 108 mol.
n(H₂O) = 216 mol.
n - amount of substance.
The reaction between HNO3 and Ba(OH)2 is given by the equation below;
2HNO3 + Ba(OH)2 = Ba(NO3)2 + 2H2O
Moles of Barium hydroxide used;
= 0.200 × 0.039 l
= 0.0078 Moles
The mole ratio of HNO3 and Ba(OH)2 is 2: 1
Therefore; moles of nitric acid used will be;
= 0.0078 ×2 = 0.0156 moles
But; 0.0156 moles are equal to a volume of 0.10
The concentration of Nitric acid will be;
= (0.0156 × 1)/0.1
= 0.156 M
Answer:
D) 1 iron(II), 2 chloride
Explanation:
Iron II chloride is the compound; FeCl2. It is formed as follows, ionically;
Fe^2+(aq) + 2Cl^-(aq) -----> FeCl2
The formation of one mole of FeCl2 involves the reaction one mole of iron and two moles of chloride ions. This means that in FeCl2, the ratio of iron to chlorine is 1:2 as seen above.
Therefore there is one iron II ion and two chloride ions in each mole of iron II chloride, hence the answer.
The mass of an object with a net force of 356N and an acceleration rate of 4m/s² is 89kg.
<h3>How to calculate mass?</h3>
The mass of an object can be calculated using the following formula:
F = ma
Where;
- F = force (N)
- m = mass (kg)
- a = acceleration (m/s²)
m = F/a
m = 356/4
m = 89kg
Therefore, the mass of an object with a net force of 356N and an acceleration rate of 4m/s² is 89kg.
Learn more about mass at: brainly.com/question/19694949
SO₄²⁻ +NH₃ → SO₃²⁻ + H₂O +N₂
The balanced of the above redox reaction is as below
3SO₄²⁻ + 2NH₃ → 3SO₃²⁻ + 3 H₂O + N₂
Explanation
According to the law of mass conservation the number of atoms in the reactant side must be equal to number of atoms in product side.
Inserting coefficient 3 in front of SO₄² , 2 in front of NH₃, 3 in front of SO₃²⁻ and 3 in front of H₂O balance the equation above. This is because the number of atoms are equal in both side.
for example there are 2 atoms of N in both side of the reaction.