Answer:
With Br2 - Bromobenzene
With Cl2 - Chlorobenzene
With HNO3- Nitrobenzene
With H2SO4 - Benzenesulphonic acid
With HCOCl - Benzoyl chloride
With 1-chloro-2,2-dimethylpropane - 2,2dimethyl-1-phenyl propane
Explanation:
The common thread joining all these reactions is that they are all electrophillic reactions. They are so called because the attacking agents in each reagent is an electrophile. Electrophiles are species that have electron deficient centers and are known to attack molecules that are high in electron density at regions of high electron density.
The benzene molecule has rich electron density. Any substituents that donates electrons to the ring improves the likelihood that benzene will undergo electrophillic substitution reactions while electron withdrawing substituents decrease the likelihood that benzene will undergo electrophillic substitution reactions.
The names of the compounds formed when benzene undergoes electrophillic reaction with the attacking agents listed in the question are displayed in the answer section.
Answer: covalent bond is the force of attraction that holds together two atoms that share a pair of valence electrons. Covalent bonds form only between atoms of nonmetals. The two atoms that are held together in a covalent bond may be atoms of the same element or different elements.
Explanation:
Potential energy can be calculated by the formula Pe=mgh. Plug in your values:
Pe=mgh
Pe=(6 kg)(9.8m/s^2)(100 m)
Pe=5880 kg x m^2/s^2, or 5880 Joules
Answer:
no lo sé chico ve a morir en un agujero
Explanation: