1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
3 years ago
5

A group of students were investigating the force of gravity. They began by dropping a foam ball from a height of 3 meters into a

bucket of sand. The ball hit the sand in 0.306 seconds. They dropped additional balls of approximately the same diameter, but of different masses. Here is the data they collected. Based on this experiment and the collected data, what would their conclusion be?
A) Gravitational attraction is dependent on the mass of an object.
B) The greater the mass of the object the greater the acceleration due to gravity and the faster it will fall.
C) Mass does not affect the speed of falling objects assuming there is only the force of gravity acting on the objects.
D) Mass becomes a factor affecting the speed of a falling object when the object is dropped a great distance from the surface of the Earth.
Physics
1 answer:
kondaur [170]3 years ago
4 0

Answer:B

Explanation:

You might be interested in
The image of an object formed by plane mirror is​
m_a_m_a [10]
Answer of your question is in this photo

8 0
3 years ago
1-A car moves toward east 12km is represented as A and it turns towards south 16km is represented as B. What is the resultant ve
hjlf

1. A-20 km south east

The car's displacement consists of two components into two different directions. Using a system of coordinates in which x represents the east direction and y represents the south direction, the two displacements are:

d_x = 12 km east

d_y = 16 km south

Since the two components are orthogonal to each other, we can find the resultant displacement by using Pythagorean's theorem:

d=\sqrt{d_x^2+d_y^2}=\sqrt{(12 km)^2+(16 km)^2}=\sqrt{400}=20 km

and the direction is between the two original directions, so south-east.

2. D. 10 m/s

First of all, we need to calculate the total time the stone took to hit the ground. Since the vertical distance covered is S = 78.4 m, and since the motion is an accelerated motion with constant acceleration g=9.8 m/s^2, we have

S=\frac{1}{2}gt^2

From which we find the total time of the fall, t:

t=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2(78.4 m)}{9.8 m/s^2}}=4 s

Now we can consider the horizontal motion of the stone: we know that the stone travels for d = 40 m in a time of t = 4 s, therefore the horizontal velocity of the stone is

v=\frac{d}{t}=\frac{40 m}{4 s}=10 m/s

3. B=32.32 m

As in the previous problem, we have to calculate the total time it takes for the stone to reach the river first. Since the vertical distance covered is S = 20 m, we have

t=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2(20 m)}{9.8 m/s^2}}=2.0 s

And since the stone is traveling horizontally at v = 16 m/s, the horizontal distance covered is

d=vt=(16 m/s)(2 s)=32 m

So, the closest answer is B.

5 0
3 years ago
What is the magnitude of the gravitational force of attraction to Jupiter exerts on IO
kotegsom [21]

The gravity force between Jupiter and Io will be 6.343 × 10²² N.

<h3>What is Newton's law of gravitation?</h3>

Newton's law of gravity states that each particle having mass in the universe attracts each other particle with a force known as the gravitational force.

Given data;

Mass of Jupiter,\rm m_j = 1.9 \times 10^{27} \ kg

Mass of moon of Jupiter,\rm m_{i_0}= 8.9 \times 10^{22} \ kg]

The gravitational constant is,\rm G =  6.67 \times 10^{-11 } \ m^3  kg^{-1}  s^{-2}

Distance between Jupiter and Io, R = 421,700 km = 4,217,00,000 m

The gravitational force is proportional to the product of the masses of the two bodies and inversely proportional to the square of their distance.

The gravitational force is found as;

\rm F = G \frac{ m_J m_{I_0}}{R^2} \\\\\ F = (6.67\times 10^{-11}) \frac{( (1.9\times 10^{27})\times (8.9\times 10^{22} )} { (421700000)^2}\\\\ F_g = 6.343 \times 10^{22} \  N

Hence, the gravity force between Jupiter and Io will be 6.343 × 10²² N.

The complete question is

"Jupiter has a mass of 1.9 × 1027 kg, and its moon Io has a mass of 8.9 × 1022 kg. Their centers are separated by a distance of 421,700 km what is the force of gravity acting on Io? "

To learn more about Newton's law of gravitation, refer to the link.

brainly.com/question/9699135.

#SPJ1

8 0
2 years ago
A projectile is launched straight up from a height of 960 feet with an initial velocity of 64 ft/sec. Its height at time t is h(
Natasha2012 [34]

Answer:

a) t=2s

b) h_{max}=1024ft

c) v_{y}=-256ft/s

Explanation:

From the exercise we know the initial velocity of the projectile and its initial height

v_{y}=64ft/s\\h_{o}=960ft\\g=-32ft/s^2

To find what time does it take to reach maximum height we need to find how high will it go

b) We can calculate its initial height using the following formula

Knowing that its velocity is zero at its maximum height

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

0=(64ft/s)^2-2(32ft/s^2)(y-960ft)

y=\frac{-(64ft/s)^2-2(32ft/s^2)(960ft)}{-2(32ft/s^2)}=1024ft

So, the projectile goes 1024 ft high

a) From the equation of height we calculate how long does it take to reach maximum point

h=-16t^2+64t+960

1024=-16t^2+64t+960

0=-16t^2+64t-64

Solving the quadratic equation

t=\frac{-b±\sqrt{b^{2}-4ac}}{2a}

a=-16\\b=64\\c=-64

t=2s

So, the projectile reach maximum point at t=2s

c) We can calculate the final velocity by using the following formula:

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

v_{y}=±\sqrt{(64ft/s)^{2}-2(32ft/s^2)(-960ft)}=±256ft/s

Since the projectile is going down the velocity at the instant it reaches the ground is:

v=-256ft/s

5 0
3 years ago
20 cubic inches of a gas with an absolute pressure of 5 psi is compressed until its pressure reaches 10 psi. What's the new volu
Anna71 [15]

Answer:

B. V_{f}= 10\,cubic\,inches

Explanation:

Assuming we are dealing with a perfect gas, we should use the perfect gas equation:

PV=nRT

With T the temperature, V the volume, P the pressure, R the perfect gas constant and n the number of mol, we are going to use the subscripts i for the initial state when the gas has 20 cubic inches of volume and absolute pressure of 5 psi, and final state when the gas reaches 10 psi, so we have two equations:

P_{i}V_{i}=n_{i}RT_{i} (1)

P_{f}V_{f}=n_{f}RT_{f} (2)

Assuming the temperature and the number of moles remain constant (number of moles remain constant if we don't have a leak of gas) we should equate equations (1) and (2) because T_{i}=T_{f}, n_{i}=n_{f} and R is an universal constant:

P_{i}V_{i}= P_{f}V_{f}, solving for V_{f}

V_{f} =\frac{P_{i}V_{i}}{P_{f}} =\frac{(5)(20)}{10}

V_{f}= 10 cubic\,inches

6 0
3 years ago
Other questions:
  • action and reaction are equal in magnitude and opposite in direction then , why do not they balance each other​
    9·1 answer
  • Alejandra weighs 225 newtons. how much work does she do against gravity when she climbs to a ledge at the top of a 15 meter clim
    9·1 answer
  • Two football players with mass 75 kg and 100 kg run directly toward each other with speeds of 6 m/s and 8 m/s respectively. if t
    15·1 answer
  • CHECK MY ANSWER???
    6·1 answer
  • A tunnel under a river is 2.00 km long. (a) At what frequencies can the air in the tunnel resonate? (b) Explain whether it would
    7·1 answer
  • What is the definition for the word energy?​
    13·1 answer
  • True or False: The cycle of seasons on the Earth is caused by the tilt of the Earth on its axis toward and away from the Sun.
    11·1 answer
  • The altitude of the International Space Station ttt minutes after its perigee (closest point), in kilometers, is given by \qquad
    8·1 answer
  • If the starting population of 5 rabbits grows at 200% each year, how many will there be 50 years?
    10·2 answers
  • The Cartesian coordinate of a point in the xy plane are (x,y)=(-3.50,-2.50)m. Find the poler coordinate of this point
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!