1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
11

12. By convention (agreement of the scientific community for consistency)

Physics
1 answer:
Reptile [31]3 years ago
4 0

Answer:

. always start on the north pole and terminate (end) on the South Pole

Explanation:

You might be interested in
The vaule of the g constant (the acceleration of all objects due to gravity)on earth is
True [87]
 The answer is:  " \frac{9.8 m}{s^2}" .
_____________________________________________________
6 0
4 years ago
6. If two objects each have a mass of 10 kg, then the force of gravity between them
frozen [14]

Answer:

3

Explanation:

Answer is what its supposed to be. lol.

Stick with it brother. You GOT THIS!!! 100%

b.

8 0
3 years ago
a fan is rotating clockwise and its acceleration has a positive sign. is the angular velocity of the fan speeding up, slowing do
balu736 [363]

Answer:

The angular velocity is slowing down.

Explanation:

  • By convention, if a rigid body is rotating clockwise, the angular velocity is negative.
  • If the angular acceleration has a positive sign, since the angular acceleration and the angular velocity have opposite signs, this means that the angular velocity is slowing down.
5 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
A particular 12 V car battery can send a total charge of 110 A·h (ampere-hours) through a circuit, from one terminal to the othe
DiKsa [7]
<h2>Answer:</h2>

(a) 3.96 x 10⁵C

(b) 4.752 x 10⁶ J

<h2>Explanation:</h2>

(a) The given charge (Q) is 110 A·h (ampere hour)

Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;

=> Q = 110A·h

=> Q = 110 x 1A x 1h          [1 hour = 3600 seconds]

=> Q = 110 x A x 3600s

=> Q = 396000A·s

=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C

Therefore, the number of coulombs of charge is 3.96 x 10⁵C

(b) The energy (E) involved in the process is given by;

E = Q x V           -----------------(i)

Where;

Q = magnitude of the charge = 3.96 x 10⁵C

V = electric potential = 12V

Substitute these values into equation (i) as follows;

E = 3.96 x 10⁵ x 12

E = 47.52 x 10⁵ J

E = 4.752 x 10⁶ J

Therefore, the amount of energy involved is 4.752 x 10⁶ J

8 0
3 years ago
Other questions:
  • Tom has a new set of golf clubs. Using a club 8, the ball travels an average distance of 100 meters. Using a club 7, the ball tr
    5·1 answer
  • HELLLLLLLLLLLLLLLLP QUICKKKKKKKK PLZZZZZ
    5·2 answers
  • During a medical evaluation, the doctor can __________.
    12·2 answers
  • How to find displacement with velocity and time?
    11·1 answer
  • The bending of a wave as it moves from one medium to another is called
    6·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> Which wave has the greatest frequency?
    12·1 answer
  • Hubble law how did astronomers gather the information needed to establish the law?
    14·1 answer
  • Catherine gently pushes the tip of her finger against the eraser of her pencil and the pencil does not move. Which of the follow
    6·2 answers
  • What happens at the end of most cold currents?​
    13·2 answers
  • A substance burns in the presence of oxygen.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!