Answer:
The final temperature is 31.95° C.
Explanation:
Given that,
Initial temperature of a sample of chloroform, 
Mass of chloroform, m = 150 g
It absorbs 1 kJ of heat, Q = 10³ J
The specific heat of chloroform, c = 00.96 J/gºC
We need to find the final temperature. The heat absorbed by an object in terms of specific heat is given by :

So, the final temperature is 31.95° C.
Answer:
The final volume will be 5.80 L
Explanation:
Step 1: Data given
Number of moles gas = 0.140 moles
Volume of gas = 2.78 L
Number of moles added = 0.152 moles
Step 2: Calculate the final volume
V1/n1 = V2/n2
⇒ with V1 = the initial volume = 2.78 L
⇒ with n1 = the initial number of moles = 0.140 moles
⇒ with V2 = The new volume = TO BE DETERMINED
⇒ with n2 = the new number of moles = 0.140 + 0.152 = 0.292 moles
2.78/0.140 = V2 /0.292
V2 = 5.80 L
The final volume will be 5.80 L
Answer: Option (c) is the correct answer.
Explanation:
Backbone in a nucleic acids strand is made up of sugar molecules attached with phosphodiester bond.
This sugar-phosphate linkage helps in joining of nucleotides in a DNA sequence. Due to this backbone structural framework of nucleotides is formed. In DNA, the sugar is deoxyribose.
Thus, we can conclude that the backbone in a nucleic acids strand is called sugar backbone.
Answer:
Radiation
Explanation:
Thermal energy (heat) can be transferred between objects as long as there is a temperature difference between them. However, there needs to be some kind of medium transferring it. There are basically three ways in which the energy is transferred:
1. Conduction - transfer via the direct contact
2. Convection - transfer via the circular movement of fluids or air caused by hotter layers moving upward and colder downwards.
3. Radiation - transfer via the waves from the invisible spectrum of electromagnetic radiation ( ultra-violet, infra-red...)
Frequency is not a type of energy transfer, but a number of times something is occurring in one second. When we say that the frequency is 200Hz it means that something is happening at a rate of 200 times in a second. It's most often used in describing oscillations.