Answer:
A) Concentration of A left at equilibrium of we started the reaction with [A] = 2.00 M and [B] = 2.00 M is 0.55 M.
B) Final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M is 0.90 M.
[D] = 0.90 M
Explanation:
With the first assumption that the volume of reacting mixture doesn't change throughout the reaction.
This allows us to use concentration in mol/L interchangeably with number of moles in stoichiometric calculations.
- The first attached image contains the correct question.
- The solution to part A is presented in the second attached image.
- The solution to part B is presented in the third attached image.
<h3>It takes 60 seconds to do the work</h3>
<em><u>Solution:</u></em>
Given that,
Force = 100 newtons
Distance = 15 meters
Power = 25 watts
To find: time it takes to do the work
<em><u>Find the work done:</u></em>

<em><u>Find the time taken</u></em>

Thus it takes 60 seconds to do the work
As long as they're both on the same planet, the greater mass always has the greater weight. In this question, Object-A has the greater mass, so it weighs more that Object-B does.
All the boats operating at night requires Navigation light.
Navigation light helps prevent collisions between boats and see if visibility is poor. The types of boat are : Rowboats, Tug boats, Vessels, Sailboat etc.
Various boats have different lightning color to show its use and side of the boat.
Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.