The s orbitals are not symmetrical in shape is a FALSE statement.
An s orbital is so symmetric, more specifically spherically symmetric that it looks the same from all directions.
- The atomic orbitals in the atoms of elements differ in shape.
In essence, the electrons they describe have varying probability distributions around the nucleus. The spherical symmetry of s orbitals is evident in the fact that all orbitals of a given shell in the hydrogen atom have the same energy.
- All s orbitals are spherically symmetrical. Put simply, an electron that occupies an s orbital can be found with the same probability at any orientation (at a distance) from the nucleus.
The s orbitals are therefore represented by a spherical boundary surface which is a surface which captures a high proportion of the electron density.
Read more:
brainly.com/question/5087295
It is on a plate boundary so there are a lot of volcanoes in that area. All the volcanoes form a "ring" around the plate boundary.
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
Free energy is the answer i hope this helped
Answer:
Ne
Explanation:
Atomic number of Ne is 10.
Electronic configuration of Ne:

Octet of Ne is complete . Element having complete octet are stable and behave ideal gas.
and
are reactive and hence, does not behave as ideal gas.