Answer:
Torque, 
Explanation:
It is given that,
Force acting on the particle, 
Position of the particle,
We need to find the torque on the particle about the origin. It is equal to the cross product of position and the force. Its formula is given by :
The cross product of vectors is given by :

or

So, the torque on the particle about the origin
. Hence, this is the required solution.
A is the answe for the final temperatures
For a standing wave if both ends are fixed, the wavelength must be such that the length of the string be an exact multiple of a half wavelength.
The longest wavelength must be such that the length of the string must be equal to half a wavelength, and therefore the wavelength must be double the length of the string; That is 240× 2 = 480 cm
The second longest wavelength must be such that the length of the string must be equal to a whole wavelength, so the second longest wavelength must be 240 cm.
The third longest wavelength must be such that the length of the string must be equal to 1.5 times the wavelength, so the wavelength must be 240/1.5 = 160 cm.
Answer:
Distance, d = 61.13 ft
Explanation:
It is given that,
Initial speed of the car, u = 50 mi/h = 73.34 ft/s
Finally, it stops i.e. v = 0
Deceleration of the car, 
We need to find the distance covered before the car comes to a stop. Let the distance is s. It can be calculated using third law of motion as :



s = 61.13 ft
So, the distance covered by the car before it comes to rest is 61.13 ft. Hence, this is the required solution.