Answer:
The reaction type is double displacement
Answer:
this isn't immediately clear, it can be seen in ... CO2? 1. 6.0 × 10−23 g. 2. 44 g. 3. 7.31 × 10−23 g correct. 4. 6.0 × 10. 23 g. 5. 7.31 × 10 ... 40.0 grams of S will react leaving 10.0 grams. S unreacted. 013. 10.0 points ... FeCl2 and K2CO3 is ... 9. 1. There is no reaction. 2. KCl electrolyte. 3. CO2 gas. 4. FeCO3 precipitate. correct.
Explanation:
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>
It has to be a metal, it can't be anything else.
Answer:
32
Explanation:
The vapour density of a gas is the number of times a given volume of gas or vapour is as heavy as the same volume of hydrogen at a particular temperature and pressure.
Vapour density = 2 × relative molecular mass of the gas or vapour
Relative molecular mass of SO2 = 32 + 2(16) = 64
Hence;
Vapour density of SO2 = 64/2
Vapour density of SO2 = 32