Answer:
1.D
2.C
3.D
4.D
5.C
6 B
those are the answers, we must take care of our environment
Metals are elements that are generally shiny when smooth and clean
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
Answer:
The molecular formula of the compound :
Explanation:
The empirical formula of the compound =
The molecular formula of the compound =
The equation used to calculate the valency is :

We are given:
Mass of molecular formula = 86 g/mol
Mass of empirical formula = 43 g/mol
Putting values in above equation, we get:

The molecular formula of the compound :

Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.
