Answer:
1.0 dioptres
Explanation:
Farsightedness is an eye defect in which a person can see far objects clearly but not near objects. That implies that the patients' near point is farther than 25cm which is the normal least distance of distinct vision.
Farsightedness results from the eyeball being too long or the crystalline lens not being sufficiently converging.
Carol is farsighted with a near point of about a meter (100cm). We desire to make a lens to enable her near point be reduced to about 50cm. The focal length and power of this lens is calculated in the image attached.
The power of a lens is the inverse of its focal length in meters hence the 100 in the formula for power of the lens.
<h3>Answer : </h3><h3 /><h3>A ) The larger gear can be moved by applying a relatively small force on the smaller gear.</h3>
<h3>B )
The force applied on the smaller gear is transmitted without any loss to the larger gear .</h3><h3 /><h3>
C ) the direction of motion can be changed without changing the direction of the applied force .</h3>
D ) the system would continue to move without any further, after and initial force has set in motion.
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer: 
Explanation:
The confidence interval for population mean is given by :-

Given : Sample size : 
Sample mean : 
Standard deviation : 
Significance level : 
Critical value : 
Now, the 95% confidence interval estimate of the (true, unknown) mean sound intensity of all food processors of this type :-

Answer:
(a) Magnitude of static friction force is 109 N
(b) Minimum possible value of static friction is 0.356
Solution:
As per the question;
Horizontal force exerted by the girl, F = 109 N
Mass of the crate, m = 31.2 kg
Now,
(a) To calculate the magnitude of static friction force:
Since, the crate is at rest, the forces on the crate are balanced and thus the horizontal force is equal to the frictional force, f:
F = f = 109 N
(b) The maximum possible force of friction between the floor and the crate is given by:

where
N = Normal reaction = mg
Thus

For the crate to remain at rest, The force exerted on the crate must be less than or equal to the maximum force of friction.



