Liquid? maybe, its really inbetween if you get what i mean
Answer:
3.5 × 10⁵ g of salt
Explanation:
<em>What is the mass (grams) of salt in 10.0 m³ of ocean water?</em>
We have this data:
- 1.000 mol salt is equal to 58.44 g salt
- 1.0 L of ocean water contains 0.60 mol of salt
We will need the following relations:
We can use proportions:

Answer:
Number of moles (n)=
molecular weight
weight
Weight=n×Molecular weight
=0.5×14
Mass=7g
First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L
Answer:
P = 164 Atm
Explanation:
PV = nRT => P = nRT/V
n = 10.0 moles
R = 0.08206 L·Atm/mol·K
T = 27.0°C = 300 K
V = 1.50 Liters
P = (10.0 mol)(0.08206 L·Atm/mol·K )(300 K)/(1.50 Liters) = 164.12 Atm ≅ 164 Atm (3 sig. figs.)