Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465
Answer:
a) 1 x 10^-11 mol/L
b) 1 x 10^-6 mol/L
c) 1 x 10^-5 fewer H+ ions
Explanation
pH stands for Power of Hydrogen, the more acidic a substance is, the more H+ ions it has rendering the substance acidic. a pH of 1 means the concentration of H+ ions is 1 x 10^-1. A pH of 7 means the concentration of H+ ions is 1 x 10^-7 and so on.
10^-11 has 10^-5 more H+ ions than 10^-6
Hope this helps :)
Answer:
<em>This type of error affects overall accuracy but does not necessarily affect precision.</em> - Systematic error
<em>This type of error affects precision but does not necessarily affect overall accuracy.</em> - Random error
<em>This type of error occurs if you use a buret that was calibrated incorrectly when it was made.</em> - Systematic error
<em>You can minimize this type of error by taking repeated measurements.</em> - Random error
Explanation:
<em>Systematic errors are errors that are attributable to instrument being used during measurement or consistent incorrect measurement during a research</em>. They are consistently and repeatedly committed during measurements and therefore affect the overall accuracy of measurements. A person committing systematic error can have precise repeated measurement but will be far from being accurate.
R<em>andom errors on the other hand has no pattern and are usually unavoidable because they cannot be predicted.</em> When sufficient replicate measurements are made, such errors are reduced to the barest minimum and usually do not affect the overall accuracy of measurements.