Yes, refer to the previous answer.
Answer:
0.17325 moles per liter per second
Explanation:
For a first order reaction;
in[A] = in[A]o - kt
Where;
[A]= concentration at time t
[A]o = initial concentration
k= rate constant
t= time taken
ln0.5 =ln1 - 2k
2k = ln1 - ln0.5
k= ln1 - ln0.5/2
k= 0 -(0.693)/2
k= 0.693/2
k= 0.3465 s-1
Rate of reaction = k[A]
Rate = 0.3465 s-1 × 0.50 mol/L
Rate = 0.17325 moles per liter per second
Answer:
its a chemical formula, it has numbers and symbols
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>