The answer is A, between 0 and 7.
In a pH scale from 0 to 14, we can groups these numbers into acidic, neutral, and alkaline. 7 is the neutral pH value, therefore, 0-7 is always acidic, and 7-14 is alkaline.
The smaller the number is, the more acidic the solution will be. This applies same in alkalis, the larger the pH value is, the more alkaline the solution is.
We can measure the pH of solution with many methods, the easiest way include using a pH paper, more advanced and accurate methods includes using a pH meter.
As reactant concentration decreases, the forward. reaction slows. As product concentration increases, the reverse reaction becomes faster. The forward. reaction will continue to slow and the reverse reaction will continue to increase until they are the same.Then the situation will be at equilibrium.
Answer : The value of work done by an ideal gas is, 37.9 J
Explanation :
Formula used :
Expansion work = External pressure of gas × Volume of gas
Expansion work = 1.50 atm × 0.25 L
Expansion work = 0.375 L.atm
Conversion used : (1 L.atm = 101.3 J)
Expansion work = 0.375 × 101.3 = 37.9 J
Therefore, the value of work done by an ideal gas is, 37.9 J
Answer:
15.2 g H2
Explanation:
2H2O -> 2H2 + O2
9.06 x 10^24 molecules x (1 mol/6.022 x 10^23 molecules) x (2 mol H2/2 mol H2O) x (1.008 g/1 mol) = 15.2 g H2
First step is to balance the reaction equation. Hence we get
P4 + 5 O2 => 2 P2O5
Second, we calculate the amounts we start with
P4: 112 g = 112 g/ 124 g/mol – 0.903 mol
O2: 112 g = 112 g / 32 g/mol = 3.5 mol
Lastly, we calculate the amount of P2O5 produced.
2.5 mol of O2 will react with 0.7 mol of P2O5 to produce 1.4
mol of P2O5.
This is 1.4 * (31*2 + 16*5) = 198.8 g