Answer: Its in explanation.
Explanation:
Because the electroscope is made from conducting material, some of its electrons move up to the top of the electroscope to be near the charged rod when the rod is held close.
Answer:
d = 1.07 mile
Explanation:
The rationale for this method is that the speed of light is much greater than the speed of sound, the definition of speed in uniform motion is
v = d / t
d = v t
the speed of sound is worth
v = 343 m / s
Therefore, the speed of sound must be multiplied by time to do this, all the units must be in the same system, as the distance in miles is requested
v = 343 m/s (1mile/1609 m) (3600s/1 h) = 343 (2.24) = 767.4 mile/h
v = 343 m / s (1 mile / 1609 m) = 0.213, mile/ s
If the measured time is t = 5s we multiply it by the speed
we substitute
d = 0.213 5
d = 1.07 mile
If you want to calculate the speed, this method in general is not widely used, since you must know the distance where the lightning occurred, which is relatively complicated.
Answer:
-Increase in temperature: increase
-Decrease in temperature: decrease
-Increase in volume: increase
-Decrease in volume: decrease
-Increase in pressure: increase
-Decrease in pressure: decrease
Explanation:
-Increase in temperature:
● Molecules gain kinetic energy and move fast thus increasing distance
-Decrease in temperature:
● Kinetic energy of molecules decrease so they have smaller distance
-Increase in volume:
● Molecules have more space to move around so distance increase
-Decrease in volume:
● Less space, molecules collide with each other because of decreased distance thus increasing pressure
-Increase in pressure
● Molecules collide with each other and the walls of container increasing pressure so molecules move faster and it increases distance
-Decrease in pressure:
● Molecules collide with each other and walls of container less frequently so distance between molecules decrease
Answer:
589.3 nm
Explanation:
The wavelength of a sodium light is 5893 A.
We need to find the wavelength in nm.

Also, 

So, the wavelength of sodium light is 589.3 nm.