Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero
I would tell him, in the kindest, most gentle way I could manage,
to fahgeddaboudit.
The total amount of energy doesn't change. Energy is never created,
and it never disappears. If you have some energy, then it had to come
from somewhere, and if you used some energy, then it had to go
somewhere.
You can never get more energy out of the electromotor than you put into it,
and in the real world, you can't even get THAT much out, because some
of it is always used on the way through.
Pour yourself a cold glass of soda, then look up "Perpetual Motion" or
"Free Energy" on the internet, relax, and enjoy the show. They are all
fakes. They may not all be intentionally meant to fool you, but they are
all impossible.
Explanation:
Below is an attachment containing the solution.
Answer:
refractive index of the unknown material is 1.33.
Explanation:
μ₁ = 1.21
incidence angle (i) = 41.9°
refraction angle (r) = 37.3°
Let us assume μ be the refractive index of the unknown material
according to snell's law of refraction.
μ₁ sin i = μ₂ sin r
1.21 × sin 41.9° = μ × sin 37.3°
μ = 1.33
hence the refractive index of the unknown material comes out top be 1.33