Answer:
c. 48 cm/s/s
Explanation:
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
from newtons second law of motion ,
which states that change in momentum is directly proportional to the force applied.
we can say that
f=m(v-u)/t
a=acceleration
t=time
v=final velocity
u=initial velocity
since a=(v-u)/t
f=m*a
force applied is F
m =mass of the object involved
a is the acceleration of the object involved
f=m*48.........................1
in the second case ;a mass of 2M when acted upon by a net force of 2F
f=ma
a=2F/2M
substituting equation 1
a=2(M*48)/2M
a=. 48 cm/s/s
Answer:
The Nucleus
Explanation:
Protons and Neutrons are found in the nucleus of an atom.
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".
Answer:
1) t = 3.45 s, 2) x = 138 m, 3) v_{y} = -33.81 m /s, 4) v = 52.37 m / s
,
5) θ = -40.2º
Explanation:
This is a projectile exercise, as they indicate that the projectile rolls down the cliff, it goes with a horizontal speed when leaving the cliff, therefore the speed is v₀ₓ = 40 m / s.
1) Let's calculate the time that Taardaen reaches the bottom, we place the reference system at the bottom of the cliff
y = y₀ +
t - ½ g t²
When leaving the cliff the speed is horizontal v_{oy}= 0 and at the bottom of the cliff y = 0
0 = y₀ - ½ g t2
t = √ 2y₀ / g
t = √ (2 60 / 9.8)
t = 3.45 s
2) The horizontal distance traveled
x = v₀ₓ t
x = 40 3.45
x = 138 m
3) The vertical velocity at the point of impact
v_{y} = I go - g t
v_{y} = 0 - 9.8 3.45
v_{y} = -33.81 m /s
the negative sign indicates that the speed is down
4) the resulting velocity at this point
v = √ (vₓ² + v_{y}²)
v = √ (40² + 33.8²)
v = 52.37 m / s
5) angle of impact
tan θ = v_{y} / vx
θ = tan⁻¹ v_{y} / vx
θ = tan⁻¹ (-33.81 / 40)
θ = -40.2º
6) sin (-40.2) = -0.6455
7) tan (-40.2) = -0.845
8) when the projectile falls down the cliff, the horizontal speed remains constant and the vertical speed increases, therefore the resulting speed has a direction given by the angle that is measured clockwise from the x axis