Light travelling in a vacuum is the fastest thing in the universe. The speed would be 2.99x10^8 m/s. The answer to this question is 'vacuum', where light can travel the fastest. I hope this helps you. You're welcome!
Because the polar regions receive low-angle insolation.
Insolation is the amount of solar radiation received by a given area. The Sun is always low on the horizon. The low Sun angle makes the beam of solar radiation to travel a longer distance from upper troposphere to reach earth's surface as compared to when it is directly overhead. In this case, the radiations are scattered and reflected more by the atmosphere and spread over a larger area. Thus, the intensity of solar radiation is very less at polar regions than near the equatorial region. This is the reason of very cold climates at polar regions.
Answer:
16.8 lb is the force on the brake pad of one wheel.
Explanation:
Force applied on the piston = 
Area of the piston = 
Force applied on the brakes = 
Area of the brakes = 
Applying Pascal's law: 'For an incompressible fluid pressure at one surface is equal to the pressure at other surface'.


16.8 lb is the force on the brake pad of one wheel.
Answer:
Electromagnetic force
Explanation:
There are four fundamental forces in nature:
- Gravity: it is the force that is exerted between any objects with mass. It is the weakest of all forces, so it is only relevant at planetary scales. It is always attractive, and it has an infinite range.
- Electromagnetic force: it is the force exerted between charged objects and between magnets (it is responsible for electric fields and magnetic fields). It is the 2nd strongest force, and it is the force that holds atoms in a molecule together. It can be attractive or repulsive, and it has an infinite range.
- Strong nuclear force: it is the strongest of all forces. It is responsible for holding the nucleons together inside the nucleus, and it is attractive. It has a very limited range (
), so it is relevant only at very small scales
- Weak nuclear force: it is the force responsible for radioactive decays and neutrino interactions. It also has a very short range (
Looking at all these definitions, we see that the term that defines the force that acts between charged particles is the electromagnetic force.
Answer:
The electric field is
Explanation:
The force
on a charge
in an electric field
is given by
,
which can be rearranged to give

Now, the force on the electron is
, and its charge is
; therefore,

